Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network
نویسندگان
چکیده
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملSpeech Command Recognition with Convolutional Neural Network
This project aims to build an accurate, smallfootprint, low-latency Speech Command Recognition system that is capable of detecting predefined keywords. Using the Speech Commands Dataset provided by Google’s TensorFlow and AIY teams, we have implemented different architectures using different machine learning algorithms. Our models include: Vanilla Single-Layer softmax model, Deep Neural Network...
متن کاملPredicting outcome of Morris water maze test in vascular dementia mouse model with deep learning
The Morris water maze test (MWM) is one of the most popular and established behavioral tests to evaluate rodents' spatial learning ability. The conventional training period is around 5 days, but there is no clear evidence or guidelines about the appropriate duration. In many cases, the final outcome of the MWM seems predicable from previous data and their trend. So, we assumed that if we can pr...
متن کاملMorris Water Maze – a Versatile Cognitive Tool
The Morris water maze is widely used to study spatial memory and learning. Animals are placed in a pool of water that is colored opaque with powdered non-fat milk or non-toxic tempera paint, where they must swim to a hidden escape platform. Because they are in opaque water, the animals cannot see the platform, and cannot rely on scent to find the escape route. Instead, they must rely on externa...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2018
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0197003